Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(34): e2206096119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969733

RESUMO

We study a synthetic system of motile Escherichia coli bacteria encapsulated inside giant lipid vesicles. Forces exerted by the bacteria on the inner side of the membrane are sufficient to extrude membrane tubes filled with one or several bacteria. We show that a physical coupling between the membrane tube and the flagella of the enclosed cells transforms the tube into an effective helical flagellum propelling the vesicle. We develop a simple theoretical model to estimate the propulsive force from the speed of the vesicles and demonstrate the good efficiency of this coupling mechanism. Together, these results point to design principles for conferring motility to synthetic cells.


Assuntos
Células Artificiais/microbiologia , Escherichia coli/fisiologia , Vesículas Citoplasmáticas/microbiologia , Escherichia coli/citologia , Flagelos/fisiologia , Lipídeos , Membranas Artificiais
2.
Nano Lett ; 19(8): 5732-5738, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31306030

RESUMO

There is much interest in developing vesicular microcompartments from natural and synthetic amphiphiles, enabling programmable interactions with living matter. Of particular interest is the development of vesicles capable of endocytosis of living bacteria. Despite the complexity of this process, theoretical studies predict that the endocytosis of prolate micro-objects is possible without the need of active cell machinery if the energy released upon bacterial adhesion to the membrane surpasses the energy required to bend the membrane. Nonetheless, natural liposomes and synthetic polymersomes fail to sufficiently recapitulate membrane properties to perform this advanced function. Here we report the engulfment of living bacteria into endosomes by cell-like dendrimersomes assembled from Janus dendrimers. Full engulfment occurred in less than a minute after contact. The process is driven by the adhesion of the bacterium to the dendrimersome's membrane by ultraweak interactions, comparable to those utilized by nature. The key to success relies on the combination of high flexibility and stability of the dendrimersomes. The key properties of the dendrimersomes are programmed into the molecular structures of their building blocks. The ability to support endocytosis highlights opportunities for the design and programming of dendrimersomes in biomedical research.


Assuntos
Células Artificiais/metabolismo , Materiais Biomiméticos/metabolismo , Dendrímeros/metabolismo , Endocitose , Escherichia coli/metabolismo , Células Artificiais/microbiologia , Endossomos/metabolismo , Infecções por Escherichia coli/microbiologia , Humanos
3.
Artif Cells Nanomed Biotechnol ; 46(sup2): 766-775, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29961338

RESUMO

Second generation E. coli DH5α (pKAU17) was successfully encapsulated by means of atomization (MA), inkjet printing (MI) and double-encapsulation (DDMI) for the purpose of urea degradation in a simulated uremic medium at 37 °C. Experimentally determined values of the effectiveness factor are 0.83, 0.28 and 0.34 for the MI, MA and DDMI capsules, respectively, suggesting that the catalytic activity of the E. coli DH5α (pKAU17) immobilized in MI capsule (d = 52 µm ± 2.7 µm) is significantly less diffusion-limited than in the case of the MA (d = 1558 µm ± 125 µm) and DDMI (d = 1370 µm ± 60 µm) bio-encapsulation schemes at the 98.3% CI. The proposed novel double encapsulation biofabrication method for alginate-based microspheres, characterized by lower membrane degradation rates due to secondary containment is recommended compared to the standard atomization scheme currently adopted across immobilization-based therapeutic scenarios. A Fickian-based mechanism is proposed with simulations mimicking urea degradation for a single capsule for the atomization and the inkjet schemes.


Assuntos
Células Artificiais/microbiologia , Escherichia coli/metabolismo , Miniaturização , Ureia/metabolismo , Difusão , Cinética
4.
Int. microbiol ; 18(2): 71-84, jun. 2015. ilus
Artigo em Inglês | IBECS | ID: ibc-143384

RESUMO

In the past twenty years, molecular genetics has created powerful tools for genetic manipulation of living organisms. Whole genome sequencing has provided necessary information to assess knowledge on gene function and protein networks. In addition, new tools permit to modify organisms to perform desired tasks. Gene function analysis is speed up by novel approaches that couple both high throughput data generation and mining. Synthetic biology is an emerging field that uses tools for generating novel gene networks, whole genome synthesis and engineering. New applications in biotechnological, pharmaceutical and biomedical research are envisioned for synthetic biology. In recent years these new strategies have opened up the possibilities to study gene and genome editing, creation of novel tools for functional studies in virus, parasites and pathogenic bacteria. There is also the possibility to re-design organisms to generate vaccine subunits or produce new pharmaceuticals to combat multi-drug resistant pathogens. In this review we provide our opinion on the applicability of synthetic biology strategies for functional studies of pathogenic organisms and some applications such as genome editing and gene network studies to further comprehend virulence factors and determinants in pathogenic organisms. We also discuss what we consider important ethical issues for this field of molecular biology, especially for potential misuse of the new technologies (AU)


No disponible


Assuntos
Humanos , Biologia Sintética/métodos , Técnicas Microbiológicas/métodos , Genômica/métodos , Biologia Celular/ética , Biologia Sintética/ética , Biologia Molecular/ética , Engenharia Genética/ética , Exobiologia/ética , Células Artificiais/microbiologia , Microbiota/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...